Acid Deposition

(Adopted by AMS Council on 11 September 2003)
Bull. Amer. Met. Soc., 85, 299—301

EXPIRED STATEMENT

 

Acid deposition has been studied extensively in the United States and Europe. After completion of many years of study in the 1980s and 1990s, Congress passed legislation to mitigate the undesirable effects of this process. Although it has not received recent attention, acid deposition is still a major concern because it harms many ecosystems worldwide. With the increasing industrialization in other countries, it is anticipated that this problem will accompany increases in atmospheric aerosols. The following statement summarizes the present state of knowledge and uncertainty about atmospheric aspects of acid deposition and provides recommendations.

1. Background

a. Acids in the atmosphere

An "acid" is a substance that releases hydrogen ions (H+) when dissolved in water. The relative acidity of water is usually reported as the pH of the solution defined as the negative logarithm of the hydrogen ion concentration, pH = -log [H+]. Normally water has an equilibrium amount of hydrogen (H+) and hydroxide ions (OH-) that are at a molar concentration of 10-7 moles per liter. This gives rise to a pH of 7. Solutions that are lower than 7 are considered acidic, while those that have pH values higher than 7 are considered basic. Background acidity of precipitation is typically at a pH of 5.6. This is due to carbon dioxide, which is a weakly acidic gas that dissolves into the cloud water to form bicarbonate (HCO3-), carbonate (CO3-2), and acidity (H+). Other natural organic acids from the oxidation of natural hydrocarbons can lead to lower values for pH even for rains that are considered unpolluted. Typical "clean" atmospheric waters have a pH of 4.5–5.5.

Strong acids release acidity upon dissolution directly into the rain. As described below, they act to lower the pH and lead to acid deposition. The most important of these strong acids in precipitation are sulfuric (H2SO4) and nitric acid (HNO3). These strong acids are produced from the oxidation of sulfur dioxide and nitrogen dioxides emitted into the atmosphere from combustion of fossil fuels. In more polluted areas, pHs in precipitation range from 3 to 4, and in some low liquid water content clouds, pHs as low as 2–3 have been measured. The lower the pH, the higher the concentration of H+ and acidity. Since pH is a logarithmic scale, a decrease in one pH unit means a 10-fold increase in acidity or H+ concentration, and a decrease of two means a 100-fold increase in acidity, etc.

b. Formation of acids

Sulfuric and nitric acids are produced by reactions between atmospheric oxidants and emitted sulfur and nitrogen oxides (SO2, NO, and NO2), which are by-products of fossil fuel combustion and other industrial activities. NO and NO2 are commonly referred to as NOx. The dominant reactions converting SO2 to sulfuric acid include reactions with hydrogen peroxide (H2O2) in clouds and hydroxyl radical (HO) in air. Nitric acid is produced by the oxidation of NO2 by HO radical and also by a heterogeneous reaction involving NO3 radicals and ozone at night. Atmospheric oxidants responsible for acid formation are produced via a complex sequence of photochemical reactions, and some acid-generating chemical reactions occur among dissolved gaseous constituents in atmospheric clouds or aerosols. Typically, emitted NOx is converted to nitric acid within a day or less, and SO2 is converted to sulfuric acid within several days following emission. The concentrations of the oxidants, and the time scale for chemical reactions vary strongly with season, latitude, time of day, sunlight intensity, background concentrations of NOx and organic compounds, and many other chemical and meteorological factors.

Strong acids have an affinity for water, and therefore hygroscopically grow or combine with water vapor to form "haze" aerosols containing sulfuric acid, nitric acid, and varying degrees of neutralizing ammonia (NH3), especially when atmospheric relative humidities are above 60%–70%. Typically, ammonia and nitric acid are present as both gases and aerosols in the atmosphere, while sulfate partitions predominantly into condensed aerosols. These sulfate-, nitrate-, and ammonium-containing aerosol particles constitute a significant fraction of cloud condensation nuclei (CCN), and thus acid-containing aerosols are readily incorporated into clouds. Precipitation forming within clouds therefore contains dissolved CCN together with other soluble gases such as HNO3 and NH3.

c. Long-range transport

Since the time scales for the chemical formation and wet and dry removal of atmospheric acids and their precursors are in the range of several days or less, a wide range of physical and dynamical meteorological processes affect the location and extent of acid impacts. Plumes extend hundreds to thousands of kilometers from the regions where precursor SO2 and NOx pollutants are emitted. The spatial extent of impacts is strongly influenced by virtually all scales of atmospheric motions including turbulence, cloud-scale convective processes, and larger-scale prevailing synoptic weather systems.

d. Deposition of acids

Acidic substances in the atmosphere are deposited on the earth's surface by two mechanisms: wet and dry deposition. Wet deposition involves the dissolution of acidic substances into cloud water, and the subsequent fallout of acidified precipitation to the earth's surface ("acid rain"). Acidic particles and their precursors can also settle directly to the earth's surface through gravitational settling. Turbulent mixing can also bring acidic gases and droplets to the surface where they can deposit and react on soils, plants, and other surfaces. Dry-deposited substances ultimately release acids into the environment when they dissolve into subsequent precipitation or otherwise migrate into surface waters. The collection of cloud or fog droplets on trees and other vegetation also contributes to acidic deposition, particularly in mountainous areas that are covered by clouds. Dry- or wet-deposited acidic substances are transported through soils into lakes, streams, and groundwater.

e. Uncertainties

Transport and dispersion of pollutants in the lower troposphere; the radiative and chemical impacts of the emitted compounds; and the microphysics of aerosols, cloud nucleation, and precipitation formation all play roles in determining the concentrations of acidic substances in the troposphere. A comprehensive understanding of acid deposition requires a quantitative description of all of these meteorological and chemical processes. While many features of acid formation and deposition in the atmosphere are understood, a large number of uncertainties remain, whose resolution will require additional atmospheric measurements and substantial combined efforts of atmospheric scientists.

An area of significant quantitative uncertainty in our current understanding of acid deposition in the atmosphere involves cloud-scale processes. Chemical reactions in clouds are probably the most important mechanism for the formation of sulfuric acid in the atmosphere, and other cloud-scale dynamic and radiative processes affect the formation of numerous oxidants in the atmosphere. In addition, the formation of precipitation constitutes a major atmospheric removal mechanism. All of these cloud-scale phenomena are only semiquantitatively estimated in current models of tropospheric chemistry, and measurements of the regional-scale chemical influences of clouds are lacking.

2. Current situation

a. Undesirable effects

At high concentrations or exposures, acidic solutions induce numerous undesirable reactions with surfaces and materials. In conjunction with other pollutants, acid deposition contributes to potentially deleterious effects on aquatic, agricultural, and forest ecosystems.

Chemical changes attributed to the deposition of acidity from the atmosphere have been measured in forest ecosystems and surface waters. Concentrations of acids in lakes has been correlated with the concentrations and deposition rates of atmospheric acids, and high concentrations of acids in lakes and streams can harm fish populations. Health effects associated with exposure to acid-containing particulates in humans are uncertain, because current studies of these effects are too limited to unambiguously discern dose–response relationships in humans. Acid deposition from the atmosphere has been shown to accelerate the deterioration rate of exposed metals, painted finishes, and concrete or stone surfaces. Considerable damage has occurred to historic buildings and monuments due to acid rain deposition worldwide.

In industrialized areas, concentrations of sulfuric and nitric acids in cloud water and precipitation are up to 50–100 times greater than values measured in areas that are not influenced by upwind emissions of anthropogenic pollutants. The relative concentrations of deposited sulfur and nitrogen acids correlates with the relative sulfur and nitrogen emissions rates over a larger-scale area.

Sulfates and nitrates that are associated with acid deposition are also important contributors to tropospheric aerosol concentrations, particularly fine particulate matter in the less than 2.5-µm size range (PM2.5).

b. Legislation

In response to the Acid Precipitation Act of 1980, a National Acid Precipitation Assessment Program (NAPAP) was established as a 10-yr integrated research effort to coordinate federally funded research and assessment activities to facilitate the development of a firm scientific basis for policy decisions pertaining to acid rain.

In 1990, NAPAP produced a quantitative assessment of the undesirable effects associated with atmospheric acidity, and also summarized our current understandings of the emissions, transport, transformation, and deposition of acids in the atmosphere. Integrated numerical modeling systems of atmospheric chemistry and transport were refined and validated during NAPAP.

Emissions of reactive sulfur and nitrogen over the United States have been steadily declining by 6%–10% decade-1 during the 1980s. In the industrialized eastern United States, the concentrations of sulfuric and nitric acid in precipitation also declined during the 1980s.

With the adoption of the 1990 Clean Air Act Amendments, emissions of SO2 are ultimately mandated to be reduced to about 40% of the 1980 values. Reductions in sulfur emissions are to be achieved using a market-based trading and banking system of emissions allowances. Emissions of nitrogen oxides should be initially reduced by about 10% from the 1980 values after various provisions of the U.S. Clean Air Act are implemented, although these NOx emissions may increase after the turn of the century.

3. Conclusions

As pollution-control technologies improve and legislative policies are implemented, air quality should improve and the concentrations of acidic substances should decline with time. However, it is important to design, implement, and maintain a system for providing an accurate measure of the influence of control measures taken in response to air pollution legislation.

It is essential that research and monitoring continue to ensure compliance with existing public policy objectives and to quantitatively improve and verify our understanding of the complex processes involved in the formation and deposition of atmospheric acidity as embodied in current models of acidity in the atmosphere. The scientific basis for current and future pollution control strategies should be continually tested and validated in the light of our evolving understandings of the physics and chemistry of atmospheric acidity, particularly in areas where there is significant uncertainty in quantifying processes affecting concentrations of acidity in the atmosphere. Further and more sophisticated analysis of alternate emissions-reduction scenarios using reliable models of atmospheric processes could assist in designing the optimum pollution-reduction strategy.

The American Meteorological Society will continue to provide a forum for ongoing collaboration between the meteorological and chemical communities to further understand atmospheric acidity.

 







[ About the AMS | Policy Program | Conferences, Meetings, and Symposia ]
[ Education Programs and Resources ]
[ History of Earth Sciences | Journals and Publications | Local Chapter Information | Member Services ]
[ News and Information | Frequently Asked Questions (FAQs) ]

[ Disclaimer | Contacts at AMS | Email AMS Web Administrator ]

Return to AMS Home Page Click on Logo to Return to AMS Home Page
© 2003 American Meteorological Society
Headquarters: 45 Beacon Street, Boston, MA 02108-3693
Email: amsinfo@ametsoc.org
Phone: 617-227-2425; Fax: 617-742-8718