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A rtificial Intelligence (AI) techniques have had significant re-
cent successes in multiple fields, from financial forecasting 
to speech recognition. These fields and the fields of satellite 

remote sensing and Numerical Weather Prediction (NWP) share the 
same fundamental underlying needs, including signal and image 
processing, quality control mechanisms, pattern recognition, 
data fusion, forward and inverse problems, and prediction. Thus, 
modern AI in general and machine learning (ML) in particular, 
can be positively disruptive and transformational in the fields of 
satellite remote sensing and NWP—achieving the change needed 
to meet the increasing challenges of Big Data, advanced models 
and applications, and user demands.  

Operationally, AI has only applied to “niche” applications and 
with limited, hard-won successes. However, forms of AI including 
ML have been applied successfully in remote sensing and weath-
er prediction and have shown much promise for a wide range of 
geophysical problems, from aiding human interpretations to dis-
covering new relationships in large datasets and making postfore-
cast corrections. Clearly, AI has the potential to meet increasing 
requirements by and for nowcasting, forecasting, and climate 
projection. 

AI, and specifically ML, may augment or replace components 
of the NWP processing chain to 1) speed up and improve the 
processing of satellite data; 2) facilitate data assimilation and 
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initialization of numerical   weather and climate 
models; 3) speed up and improve model physics; 
and 4) improve postprocessing of model outputs. 

Global weather forecasting uses only about 
1–3% of currently available satellite data, and the 
processing time for traditional approaches using 
these data is already crippling and expected to 
increase.  New sources of data, such as the Internet 
of Things providing observations from observa-
tion towers, phones, and automobiles, will also 
complement traditional data   sources. Moreover, 
weather forecasting, including NWP, has unmet 
and increasing needs for faster and/or more accu-
rate methods of calculation. ML can provide such 
methods. 

Additionally, weather data users—from pilots 
to emergency planners to farmers— increasingly 
demand higher accuracy and greater resolution. 
As a result, weather products must combine data 
sources at increasing spatial and temporal reso-
lutions, and with improved timeliness. ML will 
be important to enabling the new approaches 
needed to ingest more sources of observations 
into increasingly more accurate (and computa-
tionally demanding) data assimilation and fore-
cast systems, and to process and disseminate the 
results. 

Advantages and Challenges
Advantages of ML methods include, but are not 
limited to, computational efficiency, accuracy, 
transferability (from other fields), synergy with 
other approaches, and ease of use. With these ad-
vantages, ML offers new paradigms for utilizing 
a large fraction of available data, improving pa-
rameterizations, tailoring products for users, and 
meeting other NWP challenges.

An example of the advantages of ML is the use 
of satellite radiance or brightness temperature ob-
servations. ML accelerates computation and im-
proves algorithms (e.g., by using training datasets 
derived from highly accurate physically based 
models that are too expensive for use in remote 
sensing and parameterizations). As a result, ML 
has the potential to improve overall accuracy and 
quality within tightening latency requirements. 
For real-time data assimilation and forecast appli-
cations, fast versions of radiative transfer are gen-
erally used.  These rely on parameterizations that 
are based on approximations and require tuning, 
introducing errors. In this situation, ML can be 
a game-changer: orders of magnitude execution 
acceleration allows a larger set of observations 
to be exploited, with the potential of improved 

accuracy/quality. This improved accuracy/quality 
is obtained by training the ML algorithms, emu-
lations, approximations, and models using data 
simulated by the most accurate radiative transfer 
calculations. Once tuned, ML will be exceedingly 
fast without loss of accuracy. 

All of this comes with several caveats. For ex-
ample, the ML models must be accurate for all 
situations, including very rare cases, therefore 
putting emphasis on a well-balanced, represen-
tative training set. It is worth noting that AI is 
not a replacement for physical models, but rather 
a complement. Continued research is needed to 
create highly accurate and detailed model phys-
ics, which can aid understanding of physical 
processes and which can produce simulated data 
to improve fast parameterizations based on ML 
emulations.

Significant experience has been accumulated 
in developing geophysical ML applications; how-
ever, a particularly powerful advantage of ML 
in geophysics is to leverage existing knowledge 
from other fields. Current AI systems help pre-
dict outcomes in, for example, cancer detection, 
electrokardiogram (EKG) analysis, algorithmic 
trading, stock market analysis and prediction, 
portfolio management, signal extraction in noisy 
environments, and automatic composition in any 
desired style of music. There are strong connec-
tions between these allied fields and problems in 
both satellite remote sensing and NWP—through 
shared fundamental procedures such as forward 
and inverse problems, morphing, mapping, and 
pattern recognition. For example, the approaches 
useful in facial recognition should also be useful 
in identifying meteorological features such as hur-
ricanes. In addition to reuse of AI methods, “trans-
fer learning” allows for taking an existing  AI net-
work trained for one task and retraining only the 
final stages of that network for a new task.  

To meet challenges in geophysics, the key con-
cerns and caveats when applying ML are: 

 
• Will the ML model be reliable, or will it be 

prone to be less accurate or even to fail for rare 
or unusual cases? ML models can only learn 
what is in their training datasets. 

• Can ML models satisfy constraints based 
on physical principles (e.g., conservation of 
mass)? 

• How can AI overcome the trust barrier (i.e., the 
reluctance of some to accept ML model output 
if they can’t understand what it is doing in its 
hidden layers)? 
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• Can ML models be extended to produce uncertainty 
estimates (i.e., error bars)? 

• Can ML development be disciplined enough to pro-
duce reproducible results? Can ML models be easily 
integrated into operational procedures? 

Concerns about reliability (i.e., the ability to handle 
unusual situations) can be mitigated by representative 
training. Since ML models should not be used to extrap-
olate far beyond the domain covered by the training set, 
the training set should be representative (i.e., large and 
diverse). Without a representative training set, one could 
accidentally introduce a bias where a feature (or  signa-
ture) limited or absent in the training set would become 
associated by the trained model with other sufficiently 
similar features. Thus, the choice of training dataset 
and specific input variables can be critical. When sim-
ulations are available (e.g., from a realistic nature run), 
the quality of the simulations is critical because the 
ML model trained on simulated data will be applied in 
reality.  

With regard to trustworthiness, nonlinear statisti-
cal models of any type are difficult to understand   and 
interpret. However, in response to the concern that ML 

Comparison of (a) the NOAA Climate Prediction Center 
analysis of precipitation for the 24-h period ending at 1200 
UTC 24 Oct 2010 to 3 forecasts, including (b) the arithmetic 
mean of the precipitation forecasts provided by 8 models, 
(c) the nonlinear artificial neural network average of the 
same models, and (d) the prediction by a human analyst who 
used satellite  images and ground observations in addition 
to model forecast. Color bars on the left side of the figures 
show the color codes for mm day–1 of precipitation. (After 
Krasnopolsky and Lin, 2012, Fig. 6.)
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models are black boxes that cannot be interpret-
ed or understood, efforts are underway to develop 
explainable AI and physics-guided neural net-
works. These developments hold the promise of 
explaining the connections in Big Data extracted 
by ML and uncovering new physical phenomena. 
Ghahramani1 has argued that ML must be able to 
represent and manipulate uncertainty about mod-
els and predictions. 

With regard to reproducibility, AI techniques 
eliminate some forms of human error inherent in 
many traditional data assimilation techniques. 
These traditional techniques require manual 
coding of human estimates based on intuition 
and approximation to solve what is fundamen-
tally an ML problem—that is, to numerically min-
imize an objective metric of errors. ML requires 
experimentation and tuning, which likewise—at 
least currently—requires some degree of human 
intuition and intervention. ML development 
should adopt modern software practices (version 
control, containerization, etc.) to ensure that in-
terested researchers can reproduce published 
results. 

Concerns about ease of integration place addi-
tional demands on the ML software system used 
for development. For example, to develop an ML 
parameterization of physics, a very specific nor-
malization of outputs is sometimes required. In 
some operational cases, the trained tool must be 
converted to another programming language to be 
consistent with the parent application. 

Applications
AI can be used comprehensively along every point 
in the value chain of NWP, from inputs to outputs 
and usage. Some examples:

Satellite observation gap filling is often required 
due to incomplete coverage or sensor problems. AI 
can be of value in these situations. 

Remote sensing retrievals already have a long his-
tory of using AI. This practice is considered ma-
ture. It can, however, benefit further from modern 
ML tools developed for other fields. 

Quality control procedures have been built up over 
time and adjusted  to account for multiple sensors. 
Machine learning can be effective in detecting and 
correcting observation problems. 

Data assimilation and fusion can benefit from mod-
ern ML techniques for the analysis of observations. 

Current data assimilation systems typically use 
only a small fraction of the available observations. 
Data fusion combines and/or converts observa-
tions and/or imagery into new information. 

Model physics calculations are a computational 
bottleneck in numerical models. For example, 
accurate radiative transfer calculations are time 
consuming for retrievals, data assimilation, and 
model parameterizations. ML models can signifi-
cantly speed up these calculations. New, fast, and 
more accurate physical parameterizations can be 
developed using data simulated by high-resolution 
and very time-consuming models. 

Nowcasting extrapolates current conditions, often 
imagery, into the near future (minutes to hours). 
For example, combining data from lightning sen-
sors, satellite imagery, and NWP model output in a 
convolutional neural network framework can cre-
ate seamless weather radar mosaics (data fusion) 
and forecasts out to 12 hours (nowcasting).

Postforecast processing and correction are import-
ant methods of improving forecasts, either on the 
original forecast grid or by adapting to local con-
ditions (as in the model output statistics method). 
ML is well equipped to detect, evaluate, and there-
fore correct errors made by physics-based models; 
to adapt forecasts from large-scale models to local 
conditions; and to nonlinearly average ensembles 
of forecasts. 

A Future Synergy with AI
ML approaches have been shown to be useful 
in many aspects of environmental prediction. 
Further, the use of ML by the satellite remote sens-
ing and NWP community is ripe for more rapid 
advances due to recent progress in applications in 
the allied fields.  

Without AI or some other transformation ap-
proach, current difficulties of large amounts of 
data are expected to be exacerbated by the expect-
ed increase in volume and diversity of environ-
mental data from small satellites, IoT, etc.; by the 
commoditization of technology leading to more 
Earth-observing satellites; and by sensors with 
higher spatial and spectral   density and resolu-
tion. The efficiency of ML will allow assimilating 
high-resolution data that are now either aggres-
sively thinned or not considered at all. The spa-
tiotemporal resolution and accuracy of ML-based 
data processing algorithms will thereby increase 
substantially. 

1 Ghahramani, Z., 

2015: Probabilistic 

machine learning and 

artificial intelligence. 

Nature, 521, 452– 

459, DOI:10.1038/

nature14541.
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METADATA

BAMS: Why did you write this article?

Sid-Ahmed Boukabara: Artificial Intelli-
gence (AI) carries a significant potential for 
all aspects related to the exploitation of the 
satellite data and for NWP, from calibration, 
remote sensing to data fusion, assimilation, 
and postforecast processing. AI brings signifi-
cant increases in efficiency, performance, and 
skills, but some challenges will likely need to 
be addressed for AI to be fully embraced in 
this field.

BAMS: Given the swift rise of AI in our scienc-
es, these challenges don’t seem exclusively 
technical.

SAB: What was really surprising was the eas-
iness by which machine learning algorithms 
could be implemented and optimized and how 
much leveraging could be done—to use archi-
tectures and setups used in totally different 
fields, and transfer them into the atmospheric 
sciences, and in particular NWP. 

BAMS: So what is the major challenge?

SAB: The biggest challenge is not technical, 
but instead is mainly a cultural resistance to 
change. In particular, when working on tran-
sitioning this work into operations, our team 
experienced several forms of resistance to the 
adoption of AI approaches. It is expected that 
this challenge will likely get reduced in intensi-
ty in the future as the community continues to 
make further progress toward the AI adoption 
route.

BAMS: Given the long history in atmospher-
ic sciences of grappling with large datasets 
and their problems, this seems somewhat 
surprising.

SAB: It was a surprise to some of us as well. 
The situation is not uniform obviously, but 
there is a clear sort of “snub” toward AI by 
some, alluding to the fact that it is a black box, 
it is not real science, etc. It could indicate a lack 
of understanding and a cautionary position. 
Perhaps it is not the case in academic circles 
but it is definitely the case, as you would ex-
pect, in operational circles.

 While AI sometimes provides novel capa-
bilities, in many cases AI replaces or enhances 
existing methods. Therefore, in the future, the 
distinction between AI and physical science may 
become blurred. A cohesive and synergistic coex-
istence of physical models with ML enhancements 
should emerge, with, for example, ML trained on 
previous forecast errors to make postforecast cor-
rections for human-induced uncertainties—when 
modeling, when implementing systems, and even 
when issuing advisories. Such an AI system sup-
ports human practitioners by providing evidence 
for reconsideration of the forecast (in weather as 
in medical diagnosis).  

Can ML improve on NWP models that are based 
on the laws of physics and data assimilation sys-
tems based on optimal Bayesian estimation? In 
fact, they can, and both physics-based models 
and optimal estimation techniques in operational 
systems have a lot in common with ML techniques. 
Already, many data assimilation techniques over-
lap with ML neural network techniques. Many 
data assimilation techniques may be thought of as 
“hand-crafted” or “artisanal” ML, prone to errors 
of implementation, misunderstandings of phys-
ical processes, errors of approximation, etc. For 
example, 3D- and 4D-variational data assimilation 
are based on clear Bayesian principles, but their 
implementation is rife with approximations and 
assumptions. Modern ML provides the opportuni-
ty to build on existing techniques, uncover their 
limitations, and possibly correct their implemen-
tation flaws.  

ML still requires human expertise to succeed. 
New model physics parameterizations, for exam-
ple, are not a standard ML problem. The success-
ful development of a geophysical ML model usu-
ally requires domain knowledge about the Earth 
system. Close collaborations between computer 
scientists, geophysicists, data scientists, remote 
sensing experts, and modelers will be essential. 

Finally, for AI to be adopted by geophysicists, 
weather forecasters, and emergency responders, 
the ML tools must be trustworthy, reliable, and 
accurate. It should be possible to accelerate ML 
adoption using lessons from how humans adopt 
new computer processes. For example, a study of 
extreme convective event nowcasting conclud-
ed that human–ML systems should provide clear 
presentations and provide explanations of how 
the ML results are obtained. The human–ML 
interface means allowing people the flexibility to 
choose and combine different tools and to correct 
the ML results.


