Human contribution to the 2020 summer successive hot-wet extremes in South Korea
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Greenhouse gas forcing has significantly increased the risk for successive hot-wet extremes as observed over South Korea in summer 2020, through intensifying hot extremes while hardly affecting wet extremes.

Introduction
[bookmark: _GoBack]During the summer 2020, South Korea was struck by ‘successive hot-wet extremes’. A strong heat wave occurred during June, resulting in the highest June temperature since 1973 with a significant impact on society (Korea Herald[footnoteRef:1]). The station-averaged temperature (June Tmean) was 1.60°C warmer (57-year return value based on Gaussian fitting) than the 1981-2010 climatology (Fig. 1a). This heat wave was characterized by a westward extended anticyclonic circulation anomaly in the mid-troposphere over Korea (Fig. 1c). From early July to mid-August, there was an extremely long wet period with the largest number of heavy rain events  on record (KMA, 2021; Korea Herald[footnoteRef:2]), which brought deadly floods and landslides at many places, causing tremendous property and infrastructure damages (~ US$0.8 billion) as well as 46 deaths (KMA, 2021). When using an index for heavy precipitation frequency (R50mm, defined as the station-averaged number of days with daily precipitation ≥ 50 mm), the 2020 July-August (JA) R50mm was 5.5 days (22-year return value based on log-normal fitting, Fig. 1b), the second highest after 1987. In JA, cold air around the Korean Peninsula and the westward expansion of the North Pacific high induced a frequent development of midlatitude cyclones and a quasi-stationary front around South Korea, resulting in long-lasting rainfall (Fig. 1d; Park et al. 2021). Given no significant correlation between June Tmean and JA R50mm in the historical record, this successive hot-wet extreme event has likely occurred just by chance. In spite of their rarity, compound (co-occurring) and cascading events exert stronger socioeconomic impacts than individual events (Leonard et al. 2014; Zscheischler et al. 2018; AghaKouchak et al 2020; Kemter et al. 2021), and usually have a physical basis for being linked like hot droughts (e.g., Cheng et al., 2019). However, limited studies have assessed human influences on successive extreme events occurring without obvious physical interactions such as the 2020 hot-wet events in South Korea. These events can be a new hazard for society although mutual reinforcement or conditional dependency between them remain unclear. [1:  http://www.koreaherald.com/view.php?ud=20200816000037&ACE_SEARCH=1]  [2:  http://www.koreaherald.com/view.php?ud= 20200816000056&ACE_SEARCH=1] 

	This study investigates anthropogenic and natural contributions to the 2020 summer successive hot-wet extremes in South Korea using the Coupled Model Intercomparison Project Phase 6 (CMIP6) multimodel simulations and HadGEM3-A large-ensemble simulations. Univariate and joint probabilities of occurrence of a June heat wave and JA frequent heavy precipitation events are compared between real and counterfactual world experiments.

Data and Methods
Daily mean temperature and precipitation from 45 Korean weather stations are used as observations for 1973-2020 (Figure S1), for which data quality and homogeneity have been checked (KMA, 2016; Park and Min, 2017). We take station averages to obtain South Korean mean values for June Tmean and JA R50mm. R50mm is selected to better capture consecutive heavy rain events, compared to total precipitation or n-day accumulated precipitation (cf. Park et al. 2016; Guo et al. 2016).
Multimodel datasets from CMIP6 (Eyring et al. 2016) are used, which include historical (natural plus all anthropogenic, called ALL), greenhouse-only (GHG), natural-only (NAT), and aerosol-only forcing (AER) simulations from 11 models with a total of 37 ensemble members (see Table S1). To cover the 2020 summer, historical simulations (2001-2014) are combined with corresponding Shared Socioeconomic Pathway (SSP) 2-4.5 scenarios (2015-2020). The data over the recent 20 years (2001-2020) are then used as samples representing the year 2020 conditions. This gives 740 samples (20  years × 37 ensemble members) for different forcing simulations. 
HadGEM3-A large-ensemble simulations performed for 2020 provide 525 members for ALL and NAT each on a resolution of 0.83°×0.56° (HadGEM3-A-N216; Ciavarella et al. 2018; Vautard et al. 2019). The real world simulations (ALL) were carried out by prescribing the 2020 observed sea surface temperature (SST) and sea ice concentration (SIC) from HadISST1 (Rayner et al. 2003) and also by implementing the observed greenhouse gas and aerosol forcings. The counterfactual world simulations (NAT) were performed by using adjusted observed SST and SIC with their anthropogenic changes removed and setting other external forcings as pre-industrial levels. Here the anthropogenic changes (i.e. delta-SST) are estimated from 19 CMIP5 models (as ALL-NAT; Stone and Pall, 2020). 
Model climatology (1981-2010) is defined as each model’s ensemble mean of ALL simulations (Table S1). To account for model biases in temperature variability, observed and simulated June Tmean anomalies are normalized with respect to mean and inter-annual standard deviation of each dataset for the climatology period. GHG, NAT and AER runs are normalized based on ALL climatology of each model. To account for model biases in daily precipitation distribution, we apply a different threshold for heavy precipitation to each model, which is equivalent to the observed R50mm (Table S1). The probability of JA R50mm higher than that observed in 2020 is 3.33% during 1981-2010 (i.e. the 2020 case is a 1-in-30 year event) and we find each model’s heavy rainfall threshold using ALL simulations for 1981-2010, which corresponds to the same 30-year return value of daily precipitation. A composite analysis (Figure S2) indicates that CMIP6 and HadGEM3-A simulations can largely capture the observed circulation patterns associated with hot-wet extremes (Fig. 1c,d); the anomalous high over Korea in June and the westward extended subtropical high in JA.
The risk ratio (RR) is mainly analyzed between ALL and NAT simulations to assess the human impact on the probability of occurrence of extreme events, defined as the ratio of the probability of exceeding observed events in ALL (PALL) and NAT simulations (PNAT), i.e. RRALL/NAT = PALL / PNAT (e.g., Fischer and Knutti, 2015). The RR is also calculated between PGHG and PNAT for CMIP6 data to isolate the contribution of GHG forcing. All analyses are repeated using 2012 observations (2nd highest hot-wet event based on the joint probability of June Tmean and JA R50mm) to assess robustness of the attribution results to different thresholds (Stott et al. 2004). Univariate and joint probabilities of occurrence are calculated empirically by counting number of events exceeding the observed threshold(s) and then dividing it by the total number of samples. The “likelihood ratio method” (Paciorek et al. 2018) is employed to estimate the 5-95% confidence intervals of RR.
Results 
For June Tmean, CMIP6 results show that PALL, PGHG and PNAT are 3.24%, 27.30% and 0.81%, respectively (Table 1). The corresponding RRALL/NAT and RRGHG/NAT are 4.00 (5-95% confidence interval: 1.99-9.03) and 33.67 (18.30-71.94), respectively, indicating robust human influences on extremely warm conditions in June, consistent with previous studies (Min et al. 2014, 2019, 2020; Kim et al. 2018). Although PAER is 0%, smaller PALL than PGHG implies that aerosol forcing offsets the GHG-induced increases in probability of hot extremes, assuming other external forcings to be much less significant here. In contrast, JA R50mm shows very similar probability of extreme events across different forcings, ranging from about 3.1-5.3% (Table 1). The resulting RRALL/NAT and RRGHG/NAT are 1.12 (0.72-1.75) and 1.56 (1.04-2.38), respectively, suggesting limited detectability of human influence on the changes in heavy precipitation over East Asia (e.g., Burke et al. 2016; Kawase et al. 2020; Sun et al. 2020; Zhang et al. 2020). The successive hot-wet extreme events simultaneously exceeding the observed June Tmean and JA R50mm are expected to occur less frequently than univariate cases (Table 1). Indeed, CMIP6 results show that the joint probability of extreme events is zero in ALL, AER, and NAT (Fig. 2a), leading to the confidence interval of RRALL/NAT undefined (Fig. 2c). 2020-like successive events are extremely rare even under greenhouse warming only (PGHG = 1.49%), resulting in unbounded RRGHG/NAT (7.65-∞). 
HadGEM3-A results largely support CMIP6-based ones although they tend to exhibit higher PALL and lower PNAT than CMIP6, which might be partly due to the different experiment setup (i.e. conditioned on the observed SST/SIC vs. freely driven SST/SIC in CMIP6 coupled models). When considering June Tmean only, PALL and PNAT are 3.43% and 0.00%, resulting in unbounded RRALL/NAT  (12.84-∞, Table 1). PALL and PNAT become 6.86% and 3.05% for JA R50mm only, which gives RRALL/NAT = 2.25 (1.41-3.72), suggesting human-induced intensification of heavy precipitation. For the successive hot-wet extreme events, HadGEM3-A simulates PALL and PNAT as 0.57% and 0.00% with unbounded RRALL/NAT (1.76-∞, Fig. 2c).
To take into account the limited number of events, particularly for PNAT, the RR analysis is repeated using the 2012 observed threshold, i.e. the second highest successive events (Note that Tmean and R50mm have a similar return time of 6-7 years). As expected, PALL, PGHG and PNAT are increased overall and provide more stable RR results with reduced uncertainty ranges (Table 1). Although PAER remains 0% due to the strong aerosol cooling effect, PALL remains lower than PGHG, confirming the offsetting effects of aerosols. CMIP6 results show that RRALL/NAT = 3.39 (2.68-4.34) and RRGHG/NAT = 9.02 (7.30-11.34) for June Tmean. Smaller RRs indicate that human influence is weaker in less extreme heat events, in line with previous studies (e.g., Kharin et al. 2018; Min et al. 2020). For JA R50mm, PALL, PGHG and PNAT are increased as 9.46%, 12.57%, and 9.19%, respectively, but RRs remain similar to the 2020-based results, supporting generally much weaker signal detectability in precipitation extremes. The probabilities of 2012-like successive hot-wet extreme events become 2.57%, 8.11% and 0.81% in ALL, GHG and NAT, respectively. The corresponding RRALL/NAT is 3.17 (1.54-7.25), indicating that the risk of 2012-like hot-wet summer event has increased by about three times due to human impacts (Fig. 2c). HadGEM3-A results also show increased probabilities of occurrences when applying the lower observed threshold. In univariate cases, PALL and PNAT are 33.33% and 0.76% for June Tmean with RRALL/NAT = 43.75 (21.13-113.65) and 16.00% and 8.76% for JA R50mm with RRALL/NAT = 1.83 (1.38-2.44). However, bivariate probability remains rare with PALL = 4.76% and PNAT = 0.0%, resulting in unbounded RRALL/NAT (18.03-∞). HadGEM3-A results using the 2012 threshold need to be interpreted with caution due to its experiment setup (i.e. the 2020 observed SST/SIC was prescribed).
It is useful to check RR values for different Tmean and R50 thresholds that can occur in the future. For this purpose, RR values are also calculated for hypothetical values of normalized June Tmean from 0 to 3 and JA R50mm from 3 to 6 using CMIP6 simulations (Fig. 2d). These thresholds are constructed by linearly connecting the 2012 and 2020 observed events (solid line in Fig. 2a), thus having different rarity between Tmean and R50mm (see above). Resulting RR curves indicate an overall increase in RR as more-extreme thresholds are applied for both ALL and GHG, which demonstrates that greenhouse warming will have a stronger impact on successive hot-wet extremes with higher intensities, reaffirming previous studies (Zhou and Liu, 2018; Vogel et al. 2020). It is also noteworthy that future aerosol reduction compared to a recent baseline (Wilcox et al., 2020) may enhance warming over South Korea and add further to the GHG-induced increase in hot-wet extreme events.
Concluding remarks
CMIP6 multimodel and HadGEM3-A high-resolution large-ensemble simulations consistently indicate significant increases in the likelihood of the 2020-like successive hot-wet extreme summers due to anthropogenic greenhouse gas forcing, with impacts for society and ecosystems. Given the uncertainty due to limited model skill, further investigation is warranted using higher-resolution models which can better simulate local-scale heavy precipitation events. Inter-connections and driving factors of successive hot-wet extreme events remain unclear and need to be explored.
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Table 1. Probability of occurrence (for June Tmean, JA R50mm, and both combined) exceeding the observed 2020 and 2012 thresholds and corresponding RR values. Square brackets indicate 5-95% uncertainty ranges of RR estimated from the likelihood ratio method (Paciorek et al. 2018).
	Observed year
	Variable(s)
	Probability of occurrence
	CMIP6
	HadGEM3-A-N216

	2020
	June Tmean
	PALL
	3.24%
	3.43%

	
	
	PGHG
	27.30%
	-

	
	
	PNAT
	0.81%
	0.00%

	
	
	PAER
	0.00%
	-

	
	
	RRALL/NAT
	4.00 [1.99-9.03]
	∞ [12.84-∞]

	
	
	RRGHG/NAT
	33.67 [18.30-71.94]
	

	
	JA R50mm
	PALL
	3.78%
	6.86%

	
	
	PGHG
	5.27%
	-

	
	
	PNAT
	3.38%
	3.05%

	
	
	PAER
	3.11%
	-

	
	
	RRALL/NAT
	1.12 [0.72-1.75]
	2.25 [1.41-3.72]

	
	
	RRGHG/NAT
	1.56 [1.04-2.38]
	-

	
	June Tmean &
JA R50mm
	PALL
	0.00%
	0.57%

	
	
	PGHG
	1.49%
	-

	
	
	PNAT
	0.00%
	0.00%

	
	
	PAER
	0.00%
	-

	
	
	RRALL/NAT
	-
	∞ [1.76-∞]

	
	
	RRGHG/NAT
	∞ [7.65-∞]
	-

	2012
	June Tmean
	PALL
	24.73%
	33.33%

	
	
	PGHG
	65.81%
	-

	
	
	PNAT
	7.30%
	0.76%

	
	
	PAER
	0.00%
	-

	
	
	RRALL/NAT
	3.39 [2.68-4.34]
	43.75 [21.13-113.65]

	
	
	RRGHG/NAT
	9.02 [7.30-11.34]
	-

	
	JA R50mm
	PALL
	9.46%
	16.00%

	
	
	PGHG
	12.57%
	-

	
	
	PNAT
	9.19%
	8.76%

	
	
	PAER
	8.78%
	-

	
	
	RRALL/NAT
	1.03 [0.79-1.35]
	1.83 [1.38-2.44]

	
	
	RRGHG/NAT
	1.37 [1.07-1.76]
	-

	
	June Tmean &
JA R50mm
	PALL
	2.57%
	4.76%

	
	
	PGHG
	8.11%
	-

	
	
	PNAT
	0.81%
	0.00%

	
	
	PAER
	0.00%
	-

	
	
	RRALL/NAT
	3.17 [1.54-7.25]
	∞ [18.03-∞]

	
	
	RRGHG/NAT
	10.00 [5.28-21.76]
	-
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Figure 1. (a) Observed time series of South Korean averaged June Tmean anomalies over 1973-2020 and model-simulated ranges of normalized June Tmean from CMIP6 (ALL, GHG, NAT, and AER) and HadGEM3-A-N216 (ALL and NAT). (b) Same as (a) but for JA R50mm. Anomaly distributions of (c) 2020 June Tmean ( shading) and 500-hPa geopotential height (H500, contour) obtained from ERA5 reanalysis and (d) 2020 JA mean precipitation (PR, shading) from GPCP and H500 from ERA5 reanalysis. The light and dark green lines represent 5,880 gpm contours observed in 2020 and its climatology (1981-2010), respectively. All anomalies are relative to 1981-2010 means.
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Figure 2. Joint probability distribution of the normalized June Tmean and JA R50mm from ALL (orange), GHG (red), AER (purple) and NAT (blue) simulations from (a) CMIP6 and (b) HadGEM3-A-N216 ensembles. Gray closed circle and square represent observed 2020 and 2012 values, respectively. (c) Risk ratio (RR) for ALL (orange) and GHG (red) with reference to NAT obtained from CMIP6 and HadGEM3-A-N216 (HG3) when using the observed 2020 and 2012 values. Error bars represent the 5-95% confidence intervals of RR with infinity mark depicting unbounded ranges. Note that RRALL/NAT for CMIP6 is undefined due to zero probabilities for both ALL and NAT (Table 1). (d) RR distributions for CMIP6 ALL (orange) and GHG (red) for hypothetical values of June Tmean and JA R50mm which are selected following the linear line passing through the two observed values in 2012 and 2020 (black sold line in panel a). Shading indicates the 5-95% confidence intervals of RR.
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